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Hereditary properties of solids undergoing shear deformation can be 
allowed for with the aid of one of the following equivalent expressions 
for the integral operator of the shear modulus; 
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corresponding to the complex modulus (4) there is the following dis- 
tribution function [3] : 
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"C t 
y = l n ~ -  ~ F ( y ) d y = - - O ( s ) d s ,  ~2 = ' ~ "  ~T, (5) 

where T0 is the relaxation time corresponding to the maximum of the 
distribution function of the logarithms of relaxation time F(g). 

(5tx = ~t~o -- p~), (2) 

where s is the shear strain; po and ~o are, respectively, the relaxed 
and nonrelaxed values of shear modulus; and ~o and / are memory func- 
tions. Choice of the explicit form of these functions, which are kernels 
of integral operators, determines the behavior of linear viscoelastic 
media. The function ~ has the following asymptotic properties: ~ )  = 

= 0 and ~0)  = 1. The first of these reflects the requirement of finite 
relaxation times; the validity of the second can be easily verified by 
taking the strain rate to be impulsive: s(t) = ~0 5(t). With respect to 
function f(t) it is necessary to stipulate f(oo) = 0, but the condition of 
finiteness o f / ( t )  as t ~ 0 is not directly imposed by Eq. (2). Numerous 
studies of stress relaxation and elastic aftereffect in solids show that 
mechanical relaxation can be satisfactorily described only by con- 
sidering memory functions f (t) which have singularities as t -~ 0 [1]. 
The most convenient for practical calculations are the memory func- 
tions postulated by Rabotnov [2], 
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Here, together with the usual notation, the following substitution 

was made: g ---~ - r - Y a n d  c~ ~ y -  1. 
In the case of periodic deformation ~ = so exp i~% Rabomov's 

kernel leads to the following expression for the complex elastic mod- 
ulus: 
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Fig. 2 

Relaxations of the type of (4) and (5) are widely used in approxi- 
mate descriptions of dielectric losses [4]. The phase diagram of the 
complex elastic modulus #" = #"(~') describably by (4) is an arc of a 
circle whose subtended angle is equal to Try. At y = 1, Rabomov's 
memory function degenerates into an exponential, and the theological 
properties of the system are described by the model of a standard linear 
body. 

Let us consider the dissipative properties of a system describable by 

a fractionaIly-exponential memory function. To this end, we sub- 
stitute in the equation of motion of a univariate oscillator, 
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Taking into account that the memory function ~(t), which deter- 
mines the integral operator (1), is related to the distribution function 
r of relaxation frequencies s = 1 / r  by ~0 = L~ (where L is the operator 
of unilateral integral LapIace transformation), it can be shown that 

the value~(t) in accordance with (3). Then, taking x = A exp i ~ ,  we 
obtain for the complex amplitude 

A = p [(%o.__ c o . -  .~176176 - r176176 ] - :  i + (ico~F (7) 

Hence, assuming A/P = a exp(-iqo), we find the amplitude of the 
steady-state mode and the phase difference 

[ ~,+~-, +2cosr ]'/~ 
a = R~2~ T + .Ro2~ -~' + 2RooRo cos * 

tg  ~ = A R  s in  I~ 

Roox "r -{- Rox -'t + AR cos 
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A R  = Roo - -  .Ro, • = co'r. (8) 

It can be shown that expressions in (8) are equivalent to the cur- 
responding formulas obtained in [5] by a different method. 
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Figure 1 shows the resonance amplitudes for #o/,u.o = 0.5 and y = 
= 0.9, the corresponding data for y = 1 (standard linear body), being 
shown in Fig. 2; the numbers by the curves indicate the values of r. 
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Fig. 3 

Thus, the curve r=  oo in both cases describes oscillations without 
energy dissipation at the nonrelaxed natural frequency woo = 1, while 
the limiting curve r = 0 corresponds to the relaxed frequency ~0. These 

curves intersect each other at the point 

~o. = (%o/ 1/g) (1 + ~0 / ~o~) 'h . (9) 

The amplitudes at this point for arbitrary r are given by [he ex- 

pression 

~,~ + x,  -~ + 2 cos ~p 
a ,  2 ~ ROO~ -2 

• + x. -'~ -- 2 cos r 

Hence it will be seen that for a standard linear body there is an 
optimum amplitude ~:, = R ~  which is independent of r, while no such 
optimum amplitude exists in the case of arbRrary y. 

Let us determine the internal friction of a medium with Rabomov's 
memory function [2] in terms of the mechanical tangent tg 6. The 
real and imaginary parts of the complex elastic modulus are 

a~ (z -'t + cos 4) 
~' = ~oo - -  x "r + • + 2 cos * 

A ~ s i n #  

~ " =  •  x - . t + 2 e o s ,  
(10) 

Hence 

Ap. sin ~p 
tg 6 = ~o~• + l~oX_ x + (~oo + I~o) cos q) (11) 

Consequently, tg 6 is determined by the modulus defect, by the 
diffusion coefficient of the relaxation spectrum y, and by a dimen- 
sionless frequency x. Curves representing the frequency dependence of 
tg 6 for P0/P* = 0.5 and 0 are reproduced, respectively, in Figs. 8 

and 4; numbers by the curves show the values of y, and r =  1. At y= 1 
and ~0 ;~ 0,Eq. (11) describes the internal friction of a standard linear 
body; at y = 1 and ~0 = 0, this formula is applicable to a Maxwell body. 
The position of the internal friction peak on the frequency axis depends 
on the modulus defect and parameter y; this dependence is described 

by 

f~'~ = (~0 1 ~t~) t12"c , (12) 

from which it follows tha~ at small y (broad relaxation sl~ectrum) the 

frequency f~ is strongly dependent on y. The height of the internal 

friction peak is given by 

A ~. sin ~ I~oo - -  P~o 
t g6m- -  2-~ A~cos~) ' A ~  V---~o �9 (13) 

It follows that the ratio of the heights of internal friction peaks for 

the two given values of the modulus defect ate weakly dependent on 

y, if (A~ cos 0)/2 << 1. In the case of a standard linear body, Eq. (18) 
leads to a known expression, tg 6 m = Ap/2. 

Regarding the possibility of using fractionally-exponential memory 
functions for describing internal friction of solids, it should be pointed 
out that this method is sufficiently effective ff the frequency dependence 
of the virtual part of the elastic modulus has a symmetrical bell- 
shaped form. In the case of a substantially asymmetrical distribution 
function of the logarithms of the relaxation times F(y), which applies, 
for instance, to polymers in the zone of transition from the highly 
elastic to the glassy (brittle) state [6], the fractionally-exponential 
function may be usefuI in describing the low-frequency asymptotic 
behavior. At ~0 = 0, we have from (12) 

tg 6 = (eos~ + • sin~ . (14) 

In the case of y = 1, Eq. (14) gives the well-known expression 
tg 5 = 1/w rfor  the internal friction of Maxwell body, widely used in 
describing the high-temperature background of internal friction of 
metals [7,8].  The substantial difference between internal friction de- 

scribed by the Maxwell model and by Eq. (14) at y ~ consists in that 
at w -" 0, in the former case t~ 6 --> ~o and in the latter tg 6 ~ tg ~; 
this difference is illustrated in Fig. 4. 

The high-frequency asymptotic form of (14) gives tg 5 = (wr) -y x 
x sin $, which-correct to a constant factor-coincides with the em- 
pirical formula tg 5 = (wr) -y postulated in [9] to describe the dis- 
location background of internal friction of metals. The problem of 
the possibility of using Eq. (14) in the entire frequency (temperature) 
range is more complex. In experimental work one usually determines 
the logarithmic decrement A rather than the mechanical loss tangent. 
When the attenuation is weak tg 5 = &/~r; when, however, the at- 
tenuation is strong A/yr tg 6. Consequently, the absence of a satu- 
ration range on experimental curves representing the temperature de- 
pendence of A/yr right up to A/yr ~ 1 cannot be regarded as grounds 
for asserting that formula (14) is not applicable in the low-frequency 
(high-temperature) range. It is interesting that in some cases the 
internal friction measured from the inverse amplitude of forced os- 
cillations under resonance conditions shows a marked reduction in the 
rate of growth of tg 6 near the melting point of a given metal [10]. 

The authors thank Yu. N. Rabomov for his helpful comments on 
the results of this work. 
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